

Situational Awareness through Root Cause Analysis

Per Andersson

DAT300 Chalmers, April 23rd 2015

GoalArt, Scheelevägen 17, 223 63 Lund, Sweden, Per Andersson, per@goalart.com

Control Room

- Operator Task
 - Monitor and maintain
 - Remote readings
 - Remote control
 - Alarms indicate unexpected and dangerous readings
 - Quick and correct actions
- Problem
 - Alarms indicate symptoms
 - Single faults may result in many alarms
 - Correlations and consequences
 - Need to understand the faults
 - Situational awareness
- Solution
 - Root cause analysis
 - Present the fault, not the alarms

Old power plant control room

GoalArt[®]

GoalArt[®]

Actual, Modern TSO Control Room

- Maintain balance *active power*
- Maintain voltages *reactive power*
- Prepare for grid maintenance
- Deal with external factors *storms*, *failing equipment*

GoalArt, Scheelevägen 17, 223 63 Lund, Sweden, Per Andersson, per@goalart.com

Centralized Control Rooms

- Centralizing accentuates alarm problems
- Gives better overview of total state
- Alarm problems are multiplied
- Think ahead!

Alarm-Related Incidents

- Three Mile Island, 1979.
- Milford Haven Refinery, 1994.
- Vallvik Pulp Plant, 1998.
- Esso Longford, 1998.
- Texas City, 2005.
- Buncefield, 2005.

GoalArt®

Vallvik Pulp Plant, 1998

- Pipe leak in mesa burner
- Cascade of 120 alarms in 1 minute
- Build up during 10 minutes
- Explosion destroyed burner
- Two independent faults
 - One less critical, *burner feed problem*, with lots of consequential alarms
 - One absolutely critical, *loss of steam pressure*, with few consequential alarms indicating imminent risk of explosion
- Critical fault drowned in cascade
- Cost over 100 000 000 SEK

Different Kinds of Alarm Problems

- High average alarm rates
 - Remove alarms
 - Redesign alarm system
 - Alarm system revision
- Wrongly tuned alarm limits
 - Retune alarm limits
- Irrelevant alarms in certain states
 - Suppress irrelevant alarms
 - State-based alarm priority
- Alarm cascades
 - Find root cause (difficult)

GoalArt[®]

Ordinary Alarm list

Original Alarms							23			
All Events [376]										
Date and Time	Ρ	Identifier	Description	Priority	Condition	Shelved	•			
03-09-23 12:30:20	 	Lin121	Line Lin121 zero voltage	A	ZerokV	U				
03-09-23 12:30:20		Lin128	Line Lin128 breaker A open	A	BrkAop	U				
03-09-23 12:30:20	 	Lin128	Line Lin128 breaker B open	A	BrkBop	U				
03-09-23 12:30:20		Lin128	Line Lin128 zero voltage	А	ZerokV	U				
03-09-23 12:30:20		Lin129	Line Lin129 breaker A open	А	BrkAop	U				
03-09-23 12:30:20		Lin129	Line Lin129 breaker B open	A	BrkBop	U				
03-09-23 12:30:20		Lin129	Line Lin129 zero voltage	A	ZerokV	U				
03-09-23 12:30:20	•	Lin164	Line Lin164 trip / power drop	E	Low	U				
03-09-23 12:30:20		Lin197	Line Lin197 breaker A open	A	BrkAop	U				
03-09-23 12:30:20		Lin197	Line Lin197 breaker B open	A	BrkBop	U				
03-09-23 12:30:20		Lin197	Line Lin197 zero voltage	A	ZerokV	U				
03-09-23 12:30:20		Bus212	Bus Bus212 A high voltage	E	HighkVA	U				
03-09-23 12:30:20	•	Bus212	Bus Bus212 B high voltage	E	HighkVB	U				
03-09-23 12:30:20		Bus212	Bus Bus212 C high voltage	E	HighkVC	U				
03-09-23 12:30:20		Bus213	Bus Bus213 A high voltage	E	HighkVA	U				
03-09-23 12:30:20		Bus213	Bus Bus213 B high voltage	E	HighkVB	U				
03-09-23 12:30:20		Bus213	Bus Bus213 C high voltage	E	HighkVC	U				
03-09-23 12:30:20	- 🔶	Bus214	Bus Bus214 A high voltage	A	HighkVA	U				
03-09-23 12:30:20		Bus214	Bus Bus214 B high voltage	A	HighkVB	U				
03-09-23 12:30:20		Bus214	Bus Bus214 C high voltage	A	HighkVC	U				
03-09-23 12:30:20		Bus219	Bus Bus219 A high voltage	E	HighkVA	U				
03-09-23 12:30:20	•	Bus219	Bus Bus219 B high voltage	E	HighkVB	U				
03-09-23 12:30:20		Bus219	Bus Bus219 C high voltage	E	HighkVC	U				
03-09-23 12:30:20		Bus221	Bus Bus221 A high voltage	A	HighkVA	U				
03-09-23 12:30:20		Bus221	Bus Bus221 B high voltage	A	Highk∨B	U				
03-09-23 12:30:20		Bus221	Bus Bus221 C high voltage	A	HighkVC	U				
03-09-23 12:30:20	•	Bus230	Bus Bus230 A high voltage	E	HighkVA	U				
03-09-23 12:30:20		Bus230	Bus Bus230 B high voltage	E	Highk∨B	U				
03-09-23 12:30:20		Bus230	Bus Bus230 C high voltage	E	HighkVC	U				
03-09-23 12:30:20		Bus249	Bus Bus249 A high voltage	E	HighkVA	U				
03-09-23 12:30:20		Bus249	Bus Bus249 B high voltage	E	HighkVB	U				
03-09-23 12:30:20	•	Bus249	Bus Bus249 C high voltage	E	HighkVC	U				
03-09-23 12:30:20		Bus266	Bus Bus266 A high voltage	А	HighkVA	U				
03-09-23 12:30:20		Bus266	Bus Bus266 B high voltage	А	HighkVB	U				
03-09-23 12:30:20		Bus266	Bus Bus266 C high ∨oltage	A	HighkVC	U				
03-09-23 12:30:20		Bus285	Bus Bus285 A high voltage	E	HighkVA	U				
03-09-23 12:30:20	•	Bus285	Bus Bus285 B high voltage	E	HighkVB	U	-			
03-09-23 12:30:20	•	Bus285	Bus Bus285 C high voltage	E	HighkVC	U	Ļ			

- Too much information
 - Different types of alarms
 - Different levels of importance
 - Many alarms on the same thing
- Beyond human capacity to effectively understand the complete situation
- The alarm list becomes useless (really!) during incidents
- Look elsewhere to really understand what happened...

GoalA

Grouping of Alarms

- Only active GDS alarms are visible in GDS together with any underlying SCADA alarms
- Example: line connected (through separate breakers) to A and B bus bars
 - First breaker (on A bar) opens => no alarm, line still in service
 - Second breaker (on B bar) opens => alarm, line out of service
 - GDS shows one alarm, indicating low flow on the line (text says Out of Service)
 - If the GDS alarm is selected, both breaker SCADA alarms show up in the Details list
- Designed for "Situational Awareness"
 - We need to know if the line becomes out of service
 - We do not (primarily) care about documenting the state of individual breakers
 - There is a separate list in the GDS with all active, individual breaker alarms

GoalAr

Finding the Real Fault

- Root Cause Analysis
 - Model based
 - First time right
 - Efficient algorithm exists
 - Zero maintenance effort (grid model is already maintained for other purposes)
- Other Methods *Not Really Working*
 - Static alarm priorities severity of the problem independent of what caused it
 - First alarm to occur what if there are several faults / process delays
 - Statistical methods / learning can't ensure meaningful results, disasters are rare
 - Logic trees / Manual rule bases endless maintenance/update effort

GoalArt Alarm List

_								
📃 GoalArt A	Alarms						23	
Primary Even	nts [2]				Root Causes			
Date and	Time	Ρ	Identifier	Description	Priority	Group	Shelved	
03-09-23	12:30:05	•	Gen014_L	Generator Gen014 trip / power drop	A		U	
03-09-23	12:30:10		Bus225_I	Bus Bus225 bus protection	А		U	
								Consequences
								•
Secondary E	vents [56]							
Date and	Time	Ρ	Identifier	Description	Priority	Group	Shelved ^	
03-09-23	12:30:20	<u> </u>	Lin116_L	Line Lin116 trip / power drop	A		U	
03-09-23	12:30:20		Lin117_L	Line Lin117 trip / power drop	A		0 -	
03-09-23	12:30:20		Lin118_L	Line Lin118 trip / power drop	A		U	
03-09-23	12:30:20		Lin12U_L	Line Lin120 trip / power drop	A		U	
03-09-23	12:30:20		Lin121_L	Line Lin121 trip / power drop	A		U	
03-09-23	12:30:20	<u>- ×</u>	Lin128_L	Line Lin 128 trip / power drop	A		<u> </u>	
03-09-23	12:30:20		Lin129_L	Line Lin 123 trip / power drop	A		0	
03-03-23	12:30:20		Buc214 H	Buc Buc 214 high voltage	2		U O	
03-09-23	12:30:20		Bus221 H	Bus Bus211 high voltage	Â		ц =	
03-09-23	12:30:20		Bus238 H	Bus Bus238 high voltage	A		ŭ	Plus
	10.00.00		040200_11	Die Dieter might en alge				1 105
Details								• Alarms are grouped per equipment
Date and	Time	Ρ	Identifier	Description	Priority	Condition	Shelved	Analitis are grouped per equipment
								• Events are moved to another list
								Events are moved to unother list
								• Non-grid alarms are suppressed
								i ton gile didinis die suppressed
								• Chattering alarms can be suppressed
								This gives large alarm reducti

reduction

Blackout September 23rd 2003

- Large blackout in Scandinavia
- September 23rd 2003, 12.35 PM
- Root causes
 - 12:30 OKG 3 nuclear reactor trip (east)
 - 12:35 Internal station short-circuit (west)
- Consequences
 - Two lines for all of southern Sweden
 - Southern Sweden collapsed (5-15 min)
 - Eastern Denmark collapsed
 - Lasted 1-5 hours
- Actions
 - Second root cause unknown for 4 hours
 - Helicopters looking for line faults
- Cost
 - Lost ~ 10 000 000 kWh
 - Cost ~ 500 000 000 USD
 - Largest disturbance in 22 years

GoalArt[®]

Time to look at Reality – Demo time!

GoalArt[®]

GoalArt, Scheelevägen 17, 223 63 Lund, Sweden, Per Andersson, per@goalart.com

Graphical Overview

- Dynamic alarm presentation
 - Primary alarms shown as "Lightning Strikes"
 - Line colors represent flow
 - Background colors represent voltage
 - Red is high, Blue is low
- Situational awareness at a glance

The Real Root Cause

GoalArt®

GoalArt, Scheelevägen 17, 223 63 Lund, Sweden, Per Andersson, per@goalart.com

Please Note!

- GoalArt is not (and does not replace) an alarm/event list
 - Track all alarms and events
 - Information about (the state of) all equipment
 - Acknowledge that the operator has observed all information accountability ©
 - Track all (also no longer valid) information about events/incidents
- GoalArt is support for the operator
 - Quick answer to the question "What happened, really?"
 - Trace back to the origin of the problem
 - Only present relevant alarms/information
 - Give operator extra confirmation that the situation is well understood

Actual Outage in Real Time

- System running at HOPS, Croatian Transmission System Operator Ltd.
- Regional black out occurred on May 14th, 2014, about 9 a.m.
- Transformer Magazine: "The entire city of Osijek, a large part of Slavonija and almost the whole of Baranja lost power supply"
- Much more than 100 SCADA Alarms
- The entire event is attributed to a single root cause, the Ernestinovo bus bar protection, with 77 grouped, consequential alarms
- HOPS representative: "We are very satisfied with the [GoalArt] results from the incident. This will boost operator confidence in the tool."
- White Paper available at http://www.goalart.com/publications/2014-HOPS.pdf

Croatian Grid

Live Screen Capture

GoalArt[®]

GoalAı

What Knowledge is in the GDS?

- Grid data from the EMS system
 - Exported from EMS in CIM/XML format
 - Complete set of one-line diagrams for the entire grid and all substations
 - All analog measurements (voltages, flows etc.) and related alarms
- Protection relay signals
 - Bus bar protection, Breaker fault protection and Ground fault protection relays
 - Based on the alarm naming conventions
- Graphics overview
 - Manually updated
- Compiled to create the internal GDS knowledge base
 - Quick and simple process
 - No learning or statistical methods
 - No further tuning after installation

How Does It Work?

- Simple example
 - Pump and closed tank
- Described as transport and storage
- Four consequence propagation rules are valid for this connection

GoalArt[®]

Simple Example

- Line 1 trips from internal fault
- Line 2 overloads
- Analysis
 - Line 1 is a root cause
 - Line 2 is a consequence
- Root cause analysis can reduce large alarm cascades to single root cause alarms

Basic MFM Model Constructs

- MFM model objects
 - Goals, functions, relations, conditions
- All grids created from model fragments in library
 - Generator
 - Line
 - Bus bar
 - Load
- Automatic generation from topology database possible
- Plug-and-play knowledge based system solution

Any Questions?

